Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.595
Filter
1.
J Hazard Mater ; 470: 134156, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38565015

ABSTRACT

While antimony (Sb) and arsenic (As) co-contamination in subsurface soil systems due to the legacy of Sb smelting wastes has been documented, the role of inherent heterogeneity on pollutant migration is largely overlooked. Herein this study investigated Sb and As migration in a slag impacted, vertically stratified subsurface at an abandoned Sb smelter. A 2-dimensional flume was assembled as a lab-scale analogue of the site and subject to rainfall and stop-rain events. Reactive transport modeling was then performed by matching the experimental observations to verify the key factors and processes controlling pollutant migration. Results showed that rainfall caused Sb and As release from the shallow slag layer and promoted their downward movement. Nevertheless, the less permeable deeper layers limited physical flow and transport, which led to Sb and As accumulation at the interface. The re-adsorption of Sb and As onto iron oxides in the deeper, more acidic layers further retarded their migration. Because of the large difference between Sb and As concentrations, Sb re-adsorption was much less effective, which led to higher mobility. Our findings overall highlight the necessity of understanding the degree and impacts of physicochemical heterogeneity for risk exposure assessment and remediation of abandoned Sb smelting sites.

2.
Spectrochim Acta A Mol Biomol Spectrosc ; 314: 124206, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38560951

ABSTRACT

This research delves into the dynamic interplay between urbanization and the characteristics of Dissolved Organic Matter (DOM) in the Anyang River, particularly under the stress of torrential rain. The motivation stems from a critical need to decipher how urban landscapes influence water quality, focusing on the intricate transformations and movements of DOM. Employing advanced fluorescence spectroscopy techniques like Excitation-Emission Matrices (EEM) and Parallel Factor Analysis (PARAFAC), the study meticulously differentiates DOM compositions in urban and agricultural settings. It unveils a pronounced distinction, with urban streams showing elevated proteinaceous DOM from wastewater, contrasting with the humic substances prevalent in agricultural runoff. The analysis also captures how intense rainfall events catalyze significant shifts in DOM profiles, thereby emphasizing the need for tailored water quality management strategies in urbanized catchments. This comprehensive approach not only bridges gaps in understanding the urban impact on riverine ecosystems but also sets a foundation for future research and policy development in the face of escalating environmental changes.

3.
Sci Total Environ ; 928: 172482, 2024 Apr 14.
Article in English | MEDLINE | ID: mdl-38621529

ABSTRACT

Various environmental factors play a role in the formation and collapse of Microcystis blooms. This study investigates the impact of heavy rainfall on cyanobacterial abundance, microbial community composition, and functional dynamics in the Nakdong River, South Korea, during typical and exceptionally rainy years. The results reveal distinct responses to rainfall variations, particularly in cyanobacterial dominance and physicochemical characteristics. In 2020, characterized by unprecedented rainfall from mid-July to August, Microcystis blooms were interrupted significantly, exhibiting lower cell densities and decreased water temperature, compared to normal bloom patterns in 2019. Moreover, microbial community composition varied, with increases in Gammaproteobacteria and notably in genera of Limnohabitans and Fluviicola. These alterations in environmental conditions and bacterial community were similar to those of the post-bloom period in late September 2019. It shows that heavy rainfall during summer leads to changes in environmental factors, consequently causing shifts in bacterial communities akin to those observed during the autumn-specific post-bloom period in typical years. These changes also accompany shifts in bacterial functions, primarily involved in the degradation of organic matter such as amino acids, fatty acids, and terpenoids, which are assumed to have been released due to the significant collapse of cyanobacteria. Our results demonstrate that heavy rainfall in early summer induces changes in the environmental factors and subsequently microbial communities and their functions, similar to those of the post-bloom period in autumn, leading to the earlier breakdown of Microcystis blooms.

4.
Sci Rep ; 14(1): 7711, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38565925

ABSTRACT

The issue of rainfall-induced slope failure has attracted more attention from geotechnical engineers as a consequence of global warming. Current cumulative waste disposal has generated scientific interest in the utilization of waste materials in geotechnical design for climate change adaptation measures. Taking into consideration the effect of slope height and angle, steel slag-a waste product derived from the production of steel-was investigated as a slope cover against rainfall. To assess the stability of the slope and the infiltration of water into the soil, numerical analyses were conducted using both SEEP/W and SLOPE/W software in conjunction with rainfall conditions. Based on the findings, it can be concluded that increasing the slope's elevation and inclination will have an adverse effect on its safety factor. Steel slag can nevertheless be utilized for minimizing rainwater infiltration into the slope, as indicated by the pore-water pressure variations and graphs of the safety factor versus time. For a 20-m slope height, steel slag slopes have demonstrated a lower factor of safety difference in comparison to the initial slope without remediation. Regardless of slope angle and slope height, the safety factor reduces marginally during rainfall.

5.
Ecology ; : e4291, 2024 Mar 31.
Article in English | MEDLINE | ID: mdl-38556944

ABSTRACT

Climate change has myriad impacts on ecosystems, but the mechanisms by which it affects individual species can be difficult to pinpoint. One strategy to discover such mechanisms is to identify a specific ecological factor related to survival or reproduction and determine how that factor is affected by climate. Here we used Landsat imagery to calculate water clarity for 127 lakes in northern Wisconsin from 1995 to 2021 and thus investigate the effect of clarity on the body condition of an aquatic visual predator, the common loon (Gavia immer). In addition, we examined rainfall and temperature as potential predictors of water clarity. Body mass tracked July water clarity strongly in loon chicks, which grow chiefly in that month, but weakly in adult males and females. Long-term mean water clarity was negatively related to chick mass but positively related to adult male mass, suggesting that loons foraging in generally clear lakes enjoy good foraging conditions in the long run but might be sensitive to perturbations in clarity during chick-rearing. Finally, chick mass was positively related to the density of docks, perhaps because angling removes large fishes and thus boosts the abundance of the small fishes on which chicks depend. Water clarity itself declined strongly from 1995 to 2021, was negatively related to July rainfall, and was positively related to July air temperature. Our findings identified both long-term and short-term water clarity as strong predictors of loon foraging efficiency, and suggest that climate change, through water clarity, impacts freshwater ecosystems profoundly. Moreover, our results identified the recent decrease in water clarity as a likely cause of population decline in common loons.

6.
Ying Yong Sheng Tai Xue Bao ; 35(3): 749-758, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38646763

ABSTRACT

With the economic development, a large number of engineering accumulation bodies with Lou soil as the main soil type were produced in Guanzhong area, Northwest China. We examined the characteristics of runoff and sediment yield of Lou soil accumulation bodies with earth (gravel content 0%) and earth-rock (gravel content 30%) under different rainfall intensities (1.0, 1.5, 2.0, 2.5 mm·min-1) and different slope lengths (3, 5, 6.5, 12 m) by the simulating rainfall method. The results showed that runoff rate was relatively stable when rainfall intensity was 1.0-1.5 mm·min-1, while runoff rate fluctuated obviously when rainfall intensity was 2.0-2.5 mm·min-1. The average runoff rate varied significantly across different rainfall intensities on the same slopes, and the difference of average runoff rate of the two slopes was significantly increased with rainfall intensity. Under the same rainfall intensity, the difference in runoff rate between the slope lengths of the earth-rock slope was more obvious than that of the earth slope. When the slope length was 3-6.5 m, flow velocity increased rapidly at first and then increased slowly or tended to be stable. When the slope length was 12 m, flow velocity increased significantly. In general, with the increases of rainfall intensity, inhibition effect of gravel on the average flow velocity was enhanced. When rainfall intensity was 2.5 mm·min-1, the maximum reduction in the average flow velocity of earth-rock slope was 61.5% lower than that of earth slope. When rainfall intensity was less than 2.0 mm·min-1, sediment yield rate showed a trend of gradual decline or stable change, while that under the other rainfall intensities showed a trend of rapid decline and then fluctuated sharply. The greater the rainfall intensity, the more obvious the fluctuation. There was a significant positive correlation between the average sediment yield rate and runoff parameters, with the runoff rate showing the best fitting effect. Among the factors, slope length had the highest contribution to runoff velocity and rainfall erosion, which was 51.8% and 35.5%, respectively. This study can provide scientific basis for soil and water erosion control of engineering accumulation in Lou soil areas.


Subject(s)
Geologic Sediments , Rain , Soil , Water Movements , China , Soil/chemistry , Ecosystem , Environmental Monitoring/methods , Gravitation , Engineering
7.
Chem Biodivers ; : e202400594, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38651347

ABSTRACT

The present study describes the seasonal and circadian variations of the major compounds from Lippia alba leaves. SPSS was used to identify, quantify, and associate the variations in the secondary metabolites of this species through HPLC/DAD analysis of the leaves hydroethanolic extracts of six selected L. alba specimens. For the circadian study, the samples were collected at four different daily hours in each year's season. For the seasonal study, the samples were collected monthly from the same individuals for two consecutive years (2018 and 2019). These samples were analyzed and quantified using a validated HPLC method for flavonoids, iridoids, and phenyl ethanoid glycoside. Mussaenoside, acteoside, and tricin-7-O-diglucuronide showed a moderate positive correlation between their biosynthesis and the precipitation index, while epi-loganin had a moderate negative correlation. Acteoside showed a moderate positive correlation between the minimum registered temperature and its production. Compared with previous studies, a drastic reduction (about 95%) in the production of tricin-7-O-diglucuronide compared with previous study and this difference could be attributed to the plant's aging. Thus, the data demonstrated that lower temperatures and high rainfall could favor the production of the major L. alba active compounds (acteoside and tricin-7-O-diglucuronide) and that older plants harm their production.

8.
Sci Rep ; 14(1): 8746, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38627554

ABSTRACT

This study proposes a novel robust optimization approach for an integrated water supply system, wherein the decision-makers attempt to improve failure safety of system under various uncertainty strategies. To cope with uncertainty, the ellipsoid uncertainty set is assumed to evaluate the best feasible solution in the direction of water supply under various strategies. We assessed the case of Hamoun watershed, a water-stressed watershed in southeastern of Iran, to evaluate the developed robust optimization model. In the following, the comparative feasibility under uncertainty levels is conducted to analyze the impacts of simulation strategies on the status of robust model. Based on the final results, the reliability of the model's objective functions experienced an increasing trend ( 58.3 % ), and the objective function values under the uncertainty strategies is greatly improved. The findings of the analysis show that the robust strategies in response to the failure safety achieve outstanding optimal objectives under uncertainty.

9.
Sci Rep ; 14(1): 8885, 2024 04 17.
Article in English | MEDLINE | ID: mdl-38632301

ABSTRACT

The use of environmental DNA (eDNA) analysis has demonstrated notable efficacy in detecting the existence of freshwater species, including those that are endangered or uncommon. This application holds significant potential for enhancing environmental monitoring and management efforts. However, the efficacy of eDNA-based detection relies on several factors. In this study, we assessed the impact of rainfall on the detection of eDNA for the Siamese bat catfish (Oreoglanis siamensis). Quantitative polymerase chain reaction (qPCR) analysis indicated that samples from days with average rainfall exceeding 35 mm (classified as heavy and very heavy rain) yielded negative results. While eDNA detection remains feasible on light or moderate rainy days, a noteworthy reduction in eDNA concentration and qPCR-positive likelihood was observed. Analysis across 12 sampling sites established a statistically significant negative relationship (p < 0.001) between eDNA detection and rainfall. Specifically, for each 1 mm increase in rainfall, there was an observed drop in eDNA concentration of 0.19 copies/mL (±0.14). The findings of this study provide definitive evidence that precipitation has a significant impact on the detection of eDNA in Siamese bat catfish. However, in the case of adverse weather conditions occurring on the day of sampling, our research indicates that it is acceptable to continue with the task, as long as the rainfall is not heavy or very heavy. To enhance the effectiveness of an eDNA survey, it is crucial to consider many factors related to climatic conditions. The aforementioned factor holds significant importance not only for the specific species under scrutiny but also for the broader dynamics of the climate.


Subject(s)
Chiroptera , DNA, Environmental , Animals , DNA, Environmental/genetics , DNA/genetics , Chiroptera/genetics , Fresh Water , Environmental Monitoring/methods
10.
Sci Total Environ ; 927: 172154, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38575029

ABSTRACT

With the inclusion of "Building Inclusive, safe, Resilient and Sustainable Cities and human Settlements" (SDG11) in the United Nations Sustainable Development Goals (SDGS), the movement to promote sustainable development from an urban perspective is growing globally. Many studies examine urban sustainability efficiency from multiple dimensions, but scant attention targets the interaction among various dimensions. This research combines the water-energy-industry subsystem to evaluate the sustainable development performance of 29 provinces in China from 2018 to 2020. The results show that 1) a water system plays an important role in promoting a city's overall sustainable performance. 2) Urban sustainable efficiency has the characteristics of low value aggregation and high value dispersion in space. 3) Regional and sub-system sustainability efficiencies exhibit clear heterogeneity. 4) Rainfall improves the sustainable efficiency of cities, mainly through water systems. 5) The coupling between water and industrial subsystems is better than that between energy and industrial subsystems, and the coupling between the central region subsystem is the best. This paper offers a new perspective for understanding the current state of sustainability in China's provinces and provides more specific suggestions for improving regional sustainability efficiency in the future.

11.
Sci Total Environ ; 927: 172205, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38599397

ABSTRACT

Adaptation measures are essential for reducing the impact of future climate risks on agricultural production systems. The present study focuses on implementing an adaptation strategy to mitigate the impact of future climate change on rainfed maize production in the Eastern Kansas River Basin (EKSRB), an important rainfed maize-producing region in the US Great Plains, which faces potential challenges of future climate risks due to a significant east-to-west aridity gradient. We used a calibrated CERES-Maize crop model to evaluate the impacts of baseline climate conditions (1985-2014), late-term future climate scenarios (under the SSP245 emission pathway and CMIP6 models), and a novel root proliferation adaptation strategy on regional maize yield and rainfall productivity. Changes in the plant root system by increasing the root density could lead to yield benefits, especially under drought conditions. Therefore, we modified the governing equation of soil root growth in the CERES-Maize model to reflect the genetic influence of a maize cultivar to improve root density by proliferation. Under baseline conditions, maize yield values ranged from 6522 to 12,849 kgha-1, with a regional average value of 9270 kgha-1. Projections for the late-term scenario indicate a substantial decline in maize yield (36 % to 50 %) and rainfall productivity (25 % to 42 %). Introducing a hypothetical maize cultivar by employing root proliferation as an adaptation strategy resulted in a 27 % increase in regional maize yield, and a 28 % increase in rainfall productivity compared to the reference cultivar without adaptation. We observed an indication of spatial dependency of maize yield and rainfall productivity on the regional precipitation gradient, with counties towards the east having an implicit advantage over those in the west. These findings offer valuable insights for the US Great Plains maize growers and breeders, guiding strategic decisions to adapt rainfed maize production to the region's impending challenges posed by climate change.


Subject(s)
Climate Change , Crops, Agricultural , Plant Roots , Zea mays , Zea mays/growth & development , Zea mays/physiology , Plant Roots/physiology , Plant Roots/growth & development , Crops, Agricultural/growth & development , Agriculture/methods , Crop Production/methods , Rain
12.
Sci Total Environ ; 929: 172485, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38636869

ABSTRACT

Stormwater runoff is a pathway of entry for microplastics (MPs, plastics <5 mm) into aquatic ecosystems. The objectives of this study were to determine MP size, morphology, chemical composition, and loading across urban storm events. Particles were extracted from stormwater samples collected at outfall locations using wet peroxide oxidation and cellulose digestion followed by analysis via attenuated total reflectance (ATR) FTIR. Concentrations observed were 0.99 ± 1.10 MP/L for 500-1000 µm and 0.41 ± 0.30 MP/L for the 1000-5000 µm size ranges. Seventeen different polymer types were observed. MP particle sizes measured using a FTIR-microscope camera indicated non-target size particles based on sieve-size classification, highlighting a potential source of error in studies reporting concentration by size class. A maximum MP load of 38.3 MP/m2 of upstream catchment was calculated. MP loadings had moderate correlations with both rainfall accumulation and intensity (Kendall τ = 0.54 and 0.42, respectively, both p ≤ 0.005). First flush (i.e. rapid wash-off of pollutants from watershed surfaces during rainfall early stages) was not always observed, and antecedent dry days were not correlated with MP abundance, likely due to the short dry periods between sampling events. Overall, the results presented provide data for risk assessment and mitigation strategies.

13.
Tree Physiol ; 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38598321

ABSTRACT

This study aimed to reveal the mechanism and significance of wet canopy photosynthesis during and after rainfall in temperate coniferous ecosystems by evaluating the influence of abaxial leaf interception on wet canopy photosynthesis. We used the eddy covariance (EC) method in conjunction with an enclosed-path gas analyser to conduct continuous ecosystem CO2 flux observations in a Japanese cypress forest within the temperate Asian monsoon area over three years. The observation shows that wet-canopy CO2 uptake predominantly occurred during the post-rainfall canopy-wet period rather than the during-rainfall period. Then, the measured canopy-wet net ecosystem exchange (NEE) was compared with the soil-vegetation-atmosphere transfer multilayer model simulations under different parameter settings of the abaxial (lower) leaf surface wet area ratio. The multilayer model predicted NEE most accurately when it assumed the wet area ratio of the abaxial surface was 50% both during and after rainfall. For the wet canopy both during and after rainfall, the model overestimated CO2 uptake when it assumed no abaxial interception in the simulation, but underestimated CO2 uptake when it assumed that the entire abaxial leaf surface was wet. These results suggest that the abaxial surface of the Japanese cypress leaf is only partly wet to maintain stomatal openness and a low level of photosynthesis. These results allow for an evaluation of the effect of rainfall on forest carbon circulation under a changing climate, facilitating an improvement of ecosystem carbon exchange models.

14.
Heliyon ; 10(7): e28184, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38590869

ABSTRACT

The objective of the study was to examine local-scale fluctuation in precipitation and temperature in selected districts of Sidama regional state. Specifically, it focuses on three districts-Hawassa Zuriya, Wonsho, and Hula-using precipitation and temperature records obtained from the Climate Hazards Group Infrared Precipitation with Station (CHIRPS) database which covers the period from 1981 to 2022. Various statistical measures such as mean, standard deviation, as well as coefficient of variation was employed to detect fluctuation. For trend detection, the Mann-Kendall (MK) and Sen's slope tests were also employed. Observations revealed that the average yearly precipitation spatially varied from 1331 mm in Hula, followed by 1275 mm in Wonsho, and 1013 mm at Hawassa Zuriya. Rainfall was bimodal which 53% rains in Kiremt and 33% in Belg season respectively. Annual rainfall show relatively low variability (<20%) for Hula and Wonsho districts, and moderate variability (CV˃20%) for Hawassa Zuriya respectively. The findings also revealed noticeable rising tendencies (p < 0.05) for average temperature across all three agroecosystems over the years under consideration with the highest slope at Hawassa Zuriya (0.038 °C/year), followed by Hula (0.031 °C/year), and Wonsho (0.022 °C/year) respectively. Moreover, both temperature and rainfall exhibited spatial and inter-annual variability. The results of this study necessitate farmers for systematic planning and implementing location specific crop calendar in the context of fluctuating climatic settings. Policy-makers as well as development practitioners can also utilize the finding to better devise and execute plans for adapting and minimizing the effects of climate change.

15.
Sci Total Environ ; 926: 172130, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38569962

ABSTRACT

Climate change has a discernible influence on rainfall patterns, thus potentially affecting the intricate dynamics of soil respiration (Rs) and soil carbon storage. However, we still lack a profound understanding of the determinants of Rs response to rainfall events. Here, utilizing a comprehensive 10-year dataset (2004-2013), we explored the direction and magnitude of Rs response to rainfall events and the underlying determinants in a temperate forest. Based on the identified 368 rainfall events over the study period, we demonstrate that rainfall suppresses Rs when the soil moisture is optimal and moist in the growing season, whereas its effect on Rs during the non-growing season is minimal. Notably, antecedent soil moisture, rather than rainfall amount, shows a substantial impact on Rs during the growing season (coefficient of determination (R2) = 0.37 for antecedent soil moisture, and R2 < 0.01 for rainfall amount). Incorporating antecedent soil moisture significantly enhances the explanatory power (R2) from 0.09 to 0.45 regarding the relative changes in Rs following rainfall events. Our results highlight the environmental dependency of Rs response to rainfall events and suggest that incorporating the role of antecedent soil moisture could enhance predictability and reduce uncertainty in ecosystem modeling.

16.
Sci Rep ; 14(1): 9320, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38653819

ABSTRACT

The quest to eradicate poverty, central to the United Nations Sustainable Development Goals (SDGs), poses a significant global challenge. Advancement in sustainable rural development is critical to this effort, requiring the seamless integration of environmental, economic, and governmental elements. Previous research often omits the complex interactions among these factors. Addressing this gap, this study evaluates sustainable rural development in China by examining the interconnection between agricultural production and government-led poverty reduction, with annual rainfall considered an influential factor of climate change impacts on these sectors and overall sustainability. Utilizing a Meta-frontier entropy network dynamic Directional Distance Function (DDF) within an exogenous Data Envelopment Analysis (DEA) model, we categorize China's 27 provinces into southern and northern regions according to the Qinling-Huaihe line for a comparative study of environmental, economic, and governmental efficiency. This innovative approach overcomes the limitations of previous static analyses. The findings reveal: (1) Rainfall, as an exogenous variable, significantly affects agricultural production efficiency. (2) The overall efficiency in both southern and northern regions increases when accounting for rainfall. (3) Government effectiveness in poverty reduction is comparatively lower in the northern region than in the southern region when rainfall is considered. These insights underscore the importance of including climatic variables in sustainable development policies and emphasize the need for region-specific strategies to bolster resilience against climatic challenges.

17.
Sci Rep ; 14(1): 8122, 2024 Apr 07.
Article in English | MEDLINE | ID: mdl-38582935

ABSTRACT

Extreme El Niño events have outsized impacts and strongly contribute to the El Niño Southern Oscillation (ENSO) warm/cold phase asymmetries. There is currently no consensus on the respective importance of oceanic and atmospheric nonlinearities for those asymmetries. Here, we use atmospheric and oceanic general circulation models that reproduce ENSO asymmetries well to quantify the atmospheric nonlinearities contribution. The linear and nonlinear components of the wind stress response to Sea Surface Temperature (SST) anomalies are isolated using ensemble atmospheric experiments, and used to force oceanic experiments. The wind stress-SST nonlinearity is dominated by the deep atmospheric convective response to SST. This wind-stress nonlinearity contributes to ~ 40% of the peak amplitude of extreme El Niño events and ~ 55% of the prolonged eastern Pacific warming they generate until the following summer. This large contribution arises because nonlinearities consistently drive equatorial westerly anomalies, while the larger linear component is made less efficient by easterly anomalies in the western Pacific during fall and winter. Overall, wind-stress nonlinearities fully account for the eastern Pacific positive ENSO skewness. Our findings underscore the pivotal role of atmospheric nonlinearities in shaping extreme El Niño events and, more generally, ENSO asymmetry.

18.
Clim Dyn ; 62(3): 2301-2316, 2024.
Article in English | MEDLINE | ID: mdl-38425750

ABSTRACT

Recent variability in West African monsoon rainfall (WAMR) has been shown to be influenced by multiple ocean-atmosphere modes, including the El Niño Southern Oscillation, Atlantic Multidecadal Oscillation and the Interdecadal Pacific Oscillation. How these modes will change in response to long term forcing is less well understood. Here we use four transient simulations driven by changes in orbital forcing and greenhouse gas concentrations over the past 6000 years to examine the relationship between West African monsoon rainfall multiscale variability and changes in the modes associated with this variability. All four models show a near linear decline in monsoon rainfall over the past 6000 years in response to the gradual weakening of the interhemispheric gradient in sea surface temperatures. The only indices that show a long-term trend are those associated with the strengthening of the El Niño Southern Oscillation from the mid-Holocene onwards. At the interannual-to-decadal timescale, WAMR variability is largely influenced by Pacific-Atlantic - Mediterranean Sea teleconnections in all simulations; the exact configurations are model sensitive. The WAMR interannual-to-decadal variability depicts marked multi-centennial oscillations, with La Niña/negative Pacific Decadal Oscillation and a weakening and/or poleward shift of subtropical high-pressure systems over the Atlantic favoring wet WAMR anomalies. The WAMR interannual-to-decadal variability also depicts an overall decreasing trend throughout the Holocene that is consistent among the simulations. This decreasing trend relates to changes in the North Atlantic and Gulf of Guinea Sea Surface Temperature variability. Supplementary Information: The online version contains supplementary material available at 10.1007/s00382-023-07023-y.

19.
Heliyon ; 10(5): e27274, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38463840

ABSTRACT

The aim of this study was to evaluate the performance of CHIRPS and TAMSAT satellite rainfall data over the Upper Gelana watershed, where gauged meteorological data to understand the nature of the climate are scarce. In addition, variability and trends in rainfall and temperature were examined from 1983 to 2021. To evaluate satellite rainfall, categorical and continuous validation statistics were used. Trends were analyzed using Mann-Kendall, Sen's Slope estimator, and innovative trend analysis (ITA) methods. The study also utilized time-series geostatistical analysis techniques. The validation statistics show that TAMSAT performs better on the daily timescale, while the two products have comparable performance on the monthly timescale. TAMSAT was chosen for rainfall analysis because of its higher resolution and performance. The results reveal high inter-annual spatiotemporal variability and strong irregularities in monthly rainfall. The Mann-Kendall test indicates statistically significant positive trends in kiremt and annual rainfall, but belg rainfall exhibits an insignificant negative trend. In the kiremt season, we found a 96.1, 101.6, and 104.8 mm decadal rate of rainfall increment in the lower weina dega (LWD), upper weina dega (UWD), and dega agroecological zones, respectively. In contrast, belg season rainfall declined by 16.4, 16.2, and 14.0 mm per decade in the LWD, UWD, and dega agroecology zones, respectively. The pixel-wise trend analysis also revealed trends and magnitudes of monthly, seasonal, and annual rainfall that vary across the study area. In both LWD and UWD annual minimum and maximum temperatures, respectively, showed significant decreasing and increasing trends, but in dega agroecology the trends were insignificant. The findings of rainfall and temperature trends using the ITA method demonstrated its ability to discover some hidden trends that were not detected by the MK test.

20.
Conserv Biol ; : e14251, 2024 Mar 10.
Article in English | MEDLINE | ID: mdl-38462849

ABSTRACT

Central America and the Caribbean are regularly battered by megadroughts, heavy rainfall, heat waves, and tropical cyclones. Although 21st-century climate change is expected to increase the frequency, intensity, and duration of these extreme weather events (EWEs), their incidence in regional protected areas (PAs) remains poorly explored. We examined historical and projected EWEs across the region based on 32 metrics that describe distinct dimensions (i.e., intensity, duration, and frequency) of heat waves, cyclones, droughts, and rainfall and compared trends in PAs with trends in unprotected lands. From the early 21st century onward, exposure to EWEs increased across the region, and PAs were predicted to be more exposed to climate extremes than unprotected areas (as shown by autoregressive model coefficients at p < 0.05 significance level). This was particularly true for heat waves, which were projected to have a significantly higher average (tested by Wilcoxon tests at p < 0.01) intensity and duration, and tropical cyclones, which affected PAs more severely in carbon-intensive scenarios. PAs were also predicted to be significantly less exposed to droughts and heavy rainfall than unprotected areas (tested by Wilcoxon tests at p < 0.01). However, droughts that could threaten connectivity between PAs are increasingly common in this region. We estimated that approximately 65% of the study area will experience at least one drought episode that is more intense and longer lasting than previous droughts. Collectively, our results highlight that new conservation strategies adapted to threats associated with EWEs need to be tailored and implemented promptly. Unless urgent action is taken, significant damage may be inflicted on the unique biodiversity of the region.


Ciclones, olas de calor, sequías y lluvias intensas son eventos comunes en Centroamérica y el Caribe, cuya frecuencia, intensidad y duración se espera aumente durante el siglo XXI a causa del cambio climático. Sin embargo, en la actualidad, se desconoce cuál será la incidencia de estos eventos meteorológicos extremos (EME) dentro de las áreas protegidas. En este estudio examinamos la exposición histórica y futura a los extremos climáticos y comparamos el grado de exposición dentro y fuera de las áreas protegidas de toda la región por medio de 32 métricas que describen distintas dimensiones (intensidad, duración y frecuencia) de las olas de calor, los ciclones, las sequías y las precipitaciones. Los resultados indican que a medida que aumente el número de EME, las áreas protegidas estarán más expuestas a los extremos climáticos que las áreas no protegidas. Esto es especialmente cierto en el caso de las olas de calor, que, según las proyecciones, tendrán una intensidad y una duración medias significativamente mayores, y de los ciclones tropicales, que afectarán más gravemente a las zonas protegidas en los escenarios intensivos en carbono. Nuestros resultados también indican que las zonas protegidas estarán significativamente menos expuestas a sequías o lluvias torrenciales que las zonas no protegidas. Sin embargo, las sequías que podrían amenazar la conectividad entre áreas protegidas son cada vez más frecuentes en esta región. Se estima que aproximadamente el 65% del área de estudio experimentará al menos un episodio de sequía más intenso y duradero que las sequías anteriores. En conjunto, nuestros resultados ponen de relieve la necesidad de diseñar y aplicar con prontitud nuevas estrategias de conservación adaptadas a las amenazas asociadas a los EWE. A menos que se tomen medidas urgentes, la biodiversidad única de la región podría sufrir daños considerables.

SELECTION OF CITATIONS
SEARCH DETAIL
...